Forecasting interictal epileptiform discharges in focal epilepsy with deep learning
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INTRODUCTION

 Interictal epileptiform discharges
(IEDs) are transient events in hyper-
excitable cortex.

PATIENT CHARACTERISTICS

« SEEG recordings were obtained from six
patients with drug-resistant epilepsy:

. Seizure

MODEL

« SEEG channels vary between patients,
both in number and placement.
« An attention-based remapping module?

DISCUSSION

« A ssignificantly better performance than by
chance was achieved for 5/6 patients,
despite not having been trained on their

Drug sion .
nﬁmm was used to enable cross-patient models. data.
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Figure 4: Forecasted IED probability alongside detected IEDs for a 30 second segment.

Figure 1: (left) An interictal epileptiform discharge. (right) SEEG depth electrode locations for patient 2.

. Elevated cortical _exmtablllty IS common DATA PREPARATION —— . At 0.61 AUC, the algorithm's performance
in uncontrolled epilepsy. | | ——— is suboptimal, particularly compared to

* |[EDs serve as passive indicators of this * For each patient, data was segmented patient-specific models.
helghtened eXCItabIIIty |nt0 250ms epOChS Figure 2: The model architecture. Inputs are remapped and then processed by ResNet-18. . Pre||m|nary ana|ys|s Suggests that the

* We introduce a novel metric: the « Bandpass filtering and standardisation remapping module is the bottleneck; a
forecasted likelihood of IEDs as a was applied to each epoch. RESULTS larger cohort may address this issue. |
continuous measure of cortical excitability. « Epochs were labelled based on the

« An average AUC of 0.61 was achieved:
= NEXT STEPS

detection of an IED in the subsequent
epoch, as determined by a machine 10
learning detector™:

* This has the potential to guide therapeutic
and diagnostic interventions in real-time.

ROC Curves for IED forecasting

« Train/test models on a larger cohort.

* |nvestigate the relationship between
model outputs and evoked responses to
stimulation.
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OBJECTIVES

o
o

« Develop machine learning models to
forecast the likelihood of upcoming
IEDs using SEEG data.

True Positive Rate
o
~

VALIDATION STRATEGY

Patient 1 (AUC = 0.67)
Patient 2 (AUC = 0.62)
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False Positive Rate

IED probabillity. patients to assess model generalisability.

Figure 3: Model performance for each patient. The average AUC was 0.61.



