Forecasting interictal epileptiform discharges in focal epilepsy with deep learning Jamie Norris^{1,2}, Stuart Smith^{1,3}, Gerald Cooray³, Karl Friston¹, Aswin Chari^{4,5}, Martin Tisdall^{4,5}, Richard Rosch^{1,6}

¹Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, UCL ² Institute of Health Informatics, UCL ³ Department of Neurophysiology, Great Ormond Street Hospital for Children, London, UK ⁴ Department of Neurosurgery, Great Ormond Street Hospital for Children, London, UK ⁵ Great Ormond Street Institute of Child Health, UCL ⁶ MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London

INTRODUCTION

Interictal epileptiform discharges (IEDs) are transient events in hyperexcitable cortex.

- Elevated **cortical excitability** is common in uncontrolled epilepsy.
- IEDs serve as passive indicators of this heightened excitability.
- We introduce a novel metric: the forecasted likelihood of IEDs as a continuous measure of cortical excitability.
- This has the potential to guide therapeutic and diagnostic interventions in real-time.

OBJECTIVES

- Develop machine learning models to forecast the likelihood of upcoming **IEDs** using SEEG data.
- Assess model performance on patients not present in the training set.
- Visualise second-by-second changes in IED probability.

PATIENT CHARACTERISTICS

• SEEG recordings were obtained from six patients with drug-resistant epilepsy:

ID	Sex	Age	ASM	Drug reduction	Hypothesis	Seizure onset	Lesion
1	М	12	2	Yes	R Temp	Hippocampus	Yes
2	F	16	2	Yes	L Temp	Hippocampus	Unclear
3	М	5	3	Yes	R Temp	Hippocampus	Yes
4	М	8	1	Yes	R Temp	Hippocampus	No
5	М	14	3	No	L Temp	Hippocampus	No
6	F	17	3	Yes	R Temp	Amygdala	No

Recordings are 2 hours per patient from >100 channels, resampled at 512 Hz.

DATA PREPARATION

- For each patient, data was segmented into 250ms epochs.
- Bandpass filtering and standardisation was applied to each epoch.
- Epochs were labelled based on the detection of an IED in the subsequent epoch, as determined by a machine learning detector¹:

Input: >100 channels (250ms)	IED here? (250m
	Input: >100 channels (2

VALIDATION STRATEGY

- 3-fold cross-validation was employed.
- Each model was trained on 4 patients.
- AUC scores reported for the 2 unseen patients to assess model generalisability.

MODEL

- SEEG channels vary between patients, both in number and placement.
- An attention-based remapping module² was used to enable cross-patient models.
- Remapped SEEG epochs were then processed by ResNet-18, a **Convolutional Neural Network (CNN).**

igure 2: The model architecture. Inputs are remapped and then processed by ResNet-18.

RESULTS

• An average AUC of 0.61 was achieved:

DISCUSSION

• A significantly better performance than by chance was achieved for 5/6 patients, despite not having been trained on their data.

• For these patients, forecasted IED probability correlates with detected IEDs:

Figure 4: Forecasted IED probability alongside detected IEDs for a 30 second segment.

 At 0.61 AUC, the algorithm's performance is **suboptimal**, particularly compared to patient-specific models.

Preliminary analysis suggests that the remapping module is the bottleneck; a larger cohort may address this issue.

NEXT STEPS

• Train/test models on a larger cohort. Investigate the relationship between model outputs and evoked responses to stimulation.

REFERENCES

¹ Baud, Maxime O., et al. "*Multi-day rhythms modulate seizure risk in* epilepsy." Nature communications 9.1 (2018): 1-10. ² Saeed, Aaqib, et al. "*Learning from heterogeneous eeg signals with* differentiable channel reordering." ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).