Localising the Seizure Onset Zone from SPES
Responses Using Deep Learning
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Single pulse electrical stimulation (SPES)

Investigational tool in epilepsy surgery (Valentin et al., 2005)

Electrical stimulus applied through adjacent electrode pairs
* Frequency: typically, between 0.2 — 1 Hz

Primarily used to 1) probe seizure networks and 2) probe epileptogenicity
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Dynamic tractography: Integrating cortico-cortical evoked potentials and
diffusion imaging. Silverstein et al. (2020)



Early Responses to SPES: Cortico-Cortical
Evoked Potentials (CCEPSs)

CCEPs for probing seizure networks
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* Emerge within 100ms post-stimulation A - L/\/\ ]
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N1 onset/P1 peak 50 ms

* Reflective of effective connectivity
* Consistent across trials: averaged to increase SNR

Single pulse electrical stimulation to probe functional and
pathological connectivity in epilepsy. Matsumoto et al. (2018)
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Stimulation to probe, excite, and inhibit the
epileptic brain. Frauscher et al. (2023)
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Delayed responses to SPES
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Single pulse electrical stimulation for identification of
structural abnormalities and prediction of seizure outcome
after epilepsy surgery: a prospective study. Valentin et al.
(2005)
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Existing deep learning approach

Localizing seizure onset zones in surgical epilepsy with

neurostimulation deep learning Patient demo grap hics:
Baruehi . Nogi»Saramat Narasmhan, PhD = Danka L oo, WD - Total Patients: 10 (Ages 23-51)

Hernan F. J. Gonzélez, MD, PhD,""® Shawniqua Williams Roberson, MEng, MD,1?
Sarah K. Bick, MD,® Catie E. Chang, PhD,? Victoria L. Morgan, PhD,'™'® Mark T. Wallace, PhD,*-¢

and Dario J. Englot, MD, PhD'27- - Temporal lobe epilepsy

A Data acquisition and neural network training
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- Sensitivity: 78.1%
- Specificity: 74.6%




Applying CNN to an open-source dataset



Dataset (1)
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Dataset description

This dataset consists of 74 patients age 4-51 years old where Cortico-Cortical Evoked
Potentials (CCEPs) were measured with Electro-CorticoGraphy (ECoG) during single
pulse electrical stimulation. For a detailed description see:

« Developmental trajectory of transmission speed in the human brain. D. van
Blooijs', M.A. van den Boom', J.F. van der Aar, G.J.M. Huiskamp, G. Castegnaro, M.
Demuru, W.J.E.M. Zweiphenning, P. van Eijsden, K. J. Miller, F.S.S. Leijten, D.
Hermes, Nature Neuroscience, 2023, https://doi.org/10.1038/s41593-023-01272-0
" these authors contributed equally.

This dataset is part of the RESPect (Registry for Epilepsy Surgery Patients) database, a
dataset recorded at the University Medical Center of Utrecht, the Netherlands. The
study was approved by the Medical Ethical Committee from the UMC Utrecht.



D a ta S et ( 2 ) A|| Channe|S 1.1 Dataset breakdown by lobe (n = 2052)

Temporal

Patient demographics: 1

- Mean age: 22.1 years

- 53% Male, 47% Female ”“
SPES parameters: 507 breakdoun by lobe (n = 253

- Intensity: 4 — 8 mA N .
- Frequency: 0.2 Hz |

- Ten monophasic stimuli 1

- Pulse Width: 1 ms
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Model training strategy

Training strategy: Test fold
- k-fold cross validation (k = 5) .
Score 1
- 28 patient training sets
- 7 patient test sets .
Score 2
Reported metrics: . Average
Score 3 == SCOre across
- Area under the precision-recall all folds
curve (AUPRC) .
Score 4
- Area under the receiver
operating characteristic
(AU ROC) . Score 5




Baseline model performance

ResNet model predictions for SOZ/nSOZ channels
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Modifying methodology to improve
performance



Modification 1: Use a Transformer

Transformer Encoder
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An Image is Worth 16x16 Words. Transformers for Image Recognition at Scale. Dosovitskiy et al. (2020)



Transformer model performance

Transformer model predictions for SOZ/nSOZ channels

Lo- ns - ns ns Hokok ns ns
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Modification 2: Add convergent paradigm

e Current method uses a
divergent paradigm

* Convergent paradigm is
better suited to observing the
epileptogenicity responses
introduced in earlier slides

Modification 2:

* For a given site, also consider
responses when other sites
stimulated
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Basis profile curve identification to understand '
electrical stimulation effects in human brain
networks. Miller et al. (2021)
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Modification 3: Add standard deviation

Mean Standard deviation
* Averaging responses across trials - =

eliminates delayed responses e A
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Full model performance

Final model predictions for SOZ/nSOZ channels

1.0 ns = o ns
, e
Random 0.14 0.50 8y X .
CNN 0.17 0.48 " .
Transformer 0.22 0.58 % " : ) .
Full model 0.37 0.74 g .
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Predictions visualised

Patient 1 labels 1 Patient 4 labels

AUROC =0.88 AUROC =0.77



Performance by lobe

* Delayed responses are typically seen in frontal and temporal lobes
* Hypothesis: modifications will have improved performance for these the most

Model Performances by Lobe Relative improvement by Lobe
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Conclusion

Transformers:
* Better suited to handling diverse channel configurations than CNNs
* Show promise for wide application in intracranial EEG analysis

Performance increase:
* Mostly from data restructuring — exploiting known SPES characteristics

Efficiency (Trained/Tested on MacBook Pro 2021)
* Pre-processing and model training: Under 20 minutes
* Applying model on a new patient: Less than 1 minute



Challenges and Future Directions

Enhance validity with external validation

Integrate channel locations for improved accuracy

Predict outcome given removal of a channel (requires outcome labels)

Black box: point to salient features?

Clinical Utility:
* Offers a way of efficiently processing large amounts of stimulation data
* Requires a think about how to truly help clinicians



Thanks for listening!
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